Acoustic Characterization and Modeling of the Thickness of a Submerged Tube by ANFIS and the Artificial Neural Network
نویسندگان
چکیده
Several theoretical and experimental studies have shown that the characterization of a target (tube,...) can be made from the cut-off frequencies of the anti-symmetric circumferential waves A1 propagating around the tube of various radius ratio b/a (a: outer radius and b: inner radius). This work investigates the abilities of Adaptive Neuro-fuzzy Inference System ANFIS and Artificial Neural Networks ANN to predict the thickness of a tube immersed in water for various cut-frequency of anti-symmetric circumferential wave A1. The useful data determinated from calculated trajectories of natural modes of resonances, were used to develop and to test the performances of these models. The ANN model was trained using Levenberg-Marquardt (LM) algorithm, and the ANFIS model was trained using hybrid algorithm learning that is a combination of Last Square Estimate and the gradient descent back-propagation algorithm. Several configurations are evaluated during the development of these networks. The Mean Absolute Error (MAE), Mean Relative Error (MRE), Standard Error (SE), Root Mans Square Error (RMSE) and Correlation Coefficient (R) were the statistical performance indices that were used to evaluate the accuracy of the various models. Based on the comparison between ANN
منابع مشابه
Prediction of Thermal performance nanofluid Al2O3 by Artificial Neural Network and Adaptive Neuro-Fuzzy Inference Systemt
In recent years, the use of modeling methods that directly utilize empirical data is increasing due to the high accuracy in predicting the results of the process, rather than statistical methods. In this paper, the ability of Artificial Neural Network (ANN) and Adaptive Fuzzy-Neural Inference System (ANFIS) models in the prediction of the thermal performance of Al2O3 nanofluid that is measured ...
متن کاملModeling of streamflow- suspended sediment load relationship by adaptive neuro-fuzzy and artificial neural network approaches (Case study: Dalaki River, Iran)
Modeling of stream flow–suspended sediment relationship is one of the most studied topics in hydrology due to itsessential application to water resources management. Recently, artificial intelligence has gained much popularity owing toits application in calibrating the nonlinear relationships inherent in the stream flow–suspended sediment relationship. Thisstudy made us of adaptive neuro-fuzzy ...
متن کاملA Comparative Study of the Neural Network, Fuzzy Logic, and Nero-fuzzy Systems in Seismic Reservoir Characterization: An Example from Arab (Surmeh) Reservoir as an Iranian Gas Field, Persian Gulf Basin
Intelligent reservoir characterization using seismic attributes and hydraulic flow units has a vital role in the description of oil and gas traps. The predicted model allows an accurate understanding of the reservoir quality, especially at the un-cored well location. This study was conducted in two major steps. In the first step, the survey compared different intelligent techniques to discover ...
متن کاملPSO-ANFIS and ANN Modeling of Propane/Propylene Separation using Cu-BTC Adsorbent
In this work, an artificial neural network (ANN) model along with a combination of adaptive neuro-fuzzy inference system (ANFIS) and particle swarm optimization (PSO) i.e. (PSO-ANFIS) are proposed for modeling and prediction of the propylene/propane adsorption under various conditions. Using these computational intelligence (CI) approaches, the input parameters such as adsorbent shape (S<su...
متن کاملMODELING FLEXURAL STRENGTH OF EPS LIGHTWEIGHT CONCRETE USING REGRESSION, NEURAL NETWORK AND ANFIS
Lightweight concrete (LWC) is a kind of concrete that made of lightweight aggregates or gas bubbles. These aggregates could be natural or artificial, and expanded polystyrene (EPS) lightweight concrete is the most interesting lightweight concrete and has good mechanical properties. Bulk density of this kind of concrete is between 300-2000 kg/m3. In this paper flexural strength of EPS is modeled...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016